SparkFun GPS-RTK Dead Reckoning ZED-F9R Hookup Guide

Pages
Contributors: bboyho, Elias The Sparkiest
Favorited Favorite 4

Introduction

The SparkFun GPS ZED-F9R is the next iteration of u-blox's GPS offerings! This version takes advantage of dead reckoning for navigation. The u-blox ZED-F9R is a powerful GPS-RTK unit that uses a fusion of IMU, wheel ticks, a vehicle dynamics model, correction data, and GNSS measurements to provide highly accurate and continuous position for navigation in the difficult conditions. We will quickly get you set up using the Qwiic ecosystem through Arduino and Python so that you can start reading the output!

SparkFun GPS-RTK Dead Reckoning Breakout - ZED-F9R (Qwiic)

GPS-22693
$289.95

SparkFun GPS-RTK Dead Reckoning Breakout - ZED-F9R, SMA (Qwiic)

GPS-22660
$289.95

SparkFun GPS-RTK Dead Reckoning pHAT for Raspberry Pi

GPS-21305
$289.95

Required Materials

To follow along with this tutorial, you will need the following materials. You may not need everything though depending on what you have. The wishlist on the left is for the ZED-F9R breakout board. The wishlist on the right includes parts for the ZED-F9R pHAT. Both include parts at a minimum to get the ZED-F9R up and running. Depending on your application, you may need additional parts for a correction source or connecting to you a vehicle to obtain heel tick/direction information. Add it to your cart, read through the guide, and adjust the cart as necessary.

Microcontroller

If you are using the breakout board and programming in Arduino, we recommend the IoT RedBoard ESP32 with the associated USB cable to start.

SparkFun IoT RedBoard - ESP32 Development Board

WRL-19177
$29.95

Qwiic Cable - 100mm

PRT-14427
$1.50

Reversible USB A to Reversible Micro-B Cable - 2m

CAB-15427
$6.50

Single Board Computer

If you are using the pHAT and programming in Python, we recommend the desktop kit as it includes all the parts at a minimum to get started. Note that the Raspberry Pi 4 is power hungry so make sure that you have a sufficient power supply when using the GPS remotely. An alternative is using the Raspberry Pi Zero but it's not fast as the Raspberry Pi 4.

SparkFun Raspberry Pi 4 Desktop Kit - 4GB

KIT-16386
$171.50

SparkFun Raspberry Pi Zero 2 W Basic Kit

KIT-18735
$49.95

PiJuice HAT - Raspberry Pi Portable Power Platform

PRT-14803
$73.95

Antenna

We recommend using the multi-band magnetic mount antenna for the full RF reception and mounting it on top of a vehicle. The antenna uses an SMA connector, so make sure to get the u.FL to SMA cable if you decide to use those. Link for that is below in the antenna accessories. The length of the antenna cable was also useful in mounting it.

GNSS L1/L2 Multi-Band Magnetic Mount Antenna - 5m (SMA)

GPS-15192
$72.95

MagmaX2 Active Multiband GNSS Magnetic Mount Antenna - AA.200

GPS-17108
$83.50

GPS Antenna Accessories

Depending on your antenna, you will need an adapter to connect to the GPS-RTK's u.FL connector. If you need more than the metal from the top of a vehicle or are mounting it on a robot that does not have the necessary ground plane, you can use the GPS antenna ground plate to improve your GPS antenna's performance.

Interface Cable SMA to U.FL - 100mm

WRL-09145
$5.50

GPS Antenna Ground Plate

GPS-17519
$6.95

Other Qwiic Cable Accessories

There are different Qwiic cable lengths available. Depending on your application, you can adjust it to your project's specifications.

SparkFun Qwiic Cable Kit

KIT-15081
$8.95

Flexible Qwiic Cable - 200mm

PRT-17258
$1.60

Qwiic Cable - 100mm

PRT-14427
$1.50

Qwiic Cable - 50mm

PRT-14426
$0.95

Suggested Reading

If you aren't familiar with the Qwiic system, we recommend reading here for an overview.

Qwiic Connect System
Qwiic Connect System

We would also recommend taking a look at the following tutorials if you aren't familiar with them.

GPS Basics

The Global Positioning System (GPS) is an engineering marvel that we all have access to for a relatively low cost and no subscription fee. With the correct hardware and minimal effort, you can determine your position and time almost anywhere on the globe.

Serial Peripheral Interface (SPI)

SPI is commonly used to connect microcontrollers to peripherals such as sensors, shift registers, and SD cards.

I2C

An introduction to I2C, one of the main embedded communications protocols in use today.

How to Work with Jumper Pads and PCB Traces

Handling PCB jumper pads and traces is an essential skill. Learn how to cut a PCB trace, add a solder jumper between pads to reroute connections, and repair a trace with the green wire method if a trace is damaged.

Getting Started with U-Center for u-blox

Learn the tips and tricks to use the u-blox software tool to configure your GPS receiver.

Three Quick Tips About Using U.FL

Quick tips regarding how to connect, protect, and disconnect U.FL connectors.