APA102 Addressable LED Hookup Guide

Pages
Contributors: bboyho
Favorited Favorite 10

Introduction

The APA102C addressable LEDs employ a 2-wire communication protocol consisting of a clock and data line. While this requires one more wire than standard WS2812 addressable LEDs, the advantage is that the communication with the LEDs have a faster data and refresh rates (great for persistence of vision (a.k.a. POV) projects). They are not as strict with timing compared to the WS2812's.

SMD LED - RGB APA102C-5050 (Pack of 10)

COM-14863
$4.50 $3.15

LED Strips

LED strips can come in sealed and unsealed versions. The SparkFun catalog carries the APA102's in 1M bare and 5M bare strips.

LED RGB Strip - Addressable, 1m (APA102)

COM-14015
$17.50 $10.95

LED RGB Strip - Addressable, 5m (APA102)

COM-14016
$96.50

Matrices, Rings, Sticks, Shields

Depending on the project, they can also be populated on PCBs as a matrix, ring, or stick. These can be useful for marquees or adding unique animations to your project! There are different sizes of APA102's.

SparkFun Qwiic LED Stick - APA102C

COM-18354
$10.95

SparkFun LuMini LED Matrix - 8x8 (64 x APA102-2020)

COM-15047
Retired

SparkFun LuMini LED Ring - 1 Inch (20 x APA102-2020)

COM-14967
$11.50

SparkFun LuMini LED Ring - 2 Inch (40 x APA102-2020)

COM-14966
$18.50

Required Materials

To follow along with this tutorial, you will need the following materials. You may not need everything though depending on what you have. Add it to your cart, read through the guide, and adjust the cart as necessary.

APA102-Based LED Board or Strip

Stating the obvious: you'll need a APA102-based board or strip. The more the merrier! In the example hookup, we'll be using a 1M LED strip, but the example should be adaptable to the other APA102-based products. Grab however many you think you'll need for your project, regardless of how many you have, it's not enough.

Microcontroller or Single Board Computer?

To get started, you're going to need a microcontroller or a single board computer. Something that can send the series of 1's and 0's used to control the LEDs. Our go-to is the classic Arduino Uno with the ATmega328P, but any Arduino board that is supported with the library should do. A Teensy, ESP8266, ESP32, or Raspberry Pi can work as well but for the scope of this tutorial, we will be using a 5V Arduino populated with an ATmega328P, the SparkFun RedBoard Qwiic.

Arduino Pro Mini 328 - 5V/16MHz

DEV-11113
$10.95

SparkFun RedBoard Qwiic

DEV-15123
$21.50

SparkFun SAMD21 Mini Breakout

DEV-13664
$22.50

Logic Level

The APA102C addressable LEDs operate natively with 5V logic, so it will save you trouble to choose a controller that can give you 0-5V, but it can be made to work with 3.3V logic with the use of a level translator. If you are using a 5V microcontroller, you will not need the following.

SparkFun Logic Level Converter - Bi-Directional

BOB-12009
$3.50

SparkFun Level Translator Breakout - PCA9306

BOB-15439
$4.95

Power Supply

You will also need a 5V power supply to run your controller and new lights. Each APA102C can draw as much as 60mA when red, green and blue are all full-on, so you'll want to have something a little beefy. For testing purposes (assuming that you do not turn all the LEDs fully on), you can use a computer's USB port and cable. A wall adapter capable of 2.5A should be plenty for our demonstration if you are placing it in an installation. If you've got a bigger project in mind, check out the Mean Well 5V/20A supply.

Wall Adapter Power Supply - 5VDC, 2A (Barrel Jack)

TOL-15312
$6.50

Wall Adapter Power Supply - 5.1V DC 2.5A (USB Micro-B)

TOL-13831
$8.95

Power Supply - 12V/5V (2A)

TOL-15664
$11.95

Power Supply - 5V, 4A

TOL-15352
$13.95

Wires

You'll also need some way to connect the boards and an Arduino. If you are using a breakout board or pieces of the LED strip, you could use a combination of jumper wires (such as M/M or M/F) and breadboard (solderless or solderable). Or you could just go with a few pieces of hookup wire or 4-pin JST-SM pigtail connectors.

SparkFun Solder-able Breadboard

PRT-12070
$5.50

Jumper Wires Premium 6" M/F Pack of 10

PRT-09140
$4.50

LED Strip Pigtail Connector (4-pin)

CAB-14576
$1.60

Breadboard - Translucent Self-Adhesive (Red)

PRT-11317
$5.50

Tools

Lastly, you are going to need a few tools. A soldering iron, some solder, general soldering accessories, wire, and a wire stripper should do if you are modifying the LED strip or connecting to a breakout board.

Hook-Up Wire - Assortment (Stranded, 22 AWG)

PRT-11375
$22.50

Soldering Iron - 60W (Adjustable Temperature)

TOL-14456
$16.50

Solder Lead Free - 15-gram Tube

TOL-09163
$3.95

Wire Strippers - 20-30 AWG

TOL-24771
$13.95

Suggested Reading

We're tried to make this hookup guide as simple as possible, but you may be lacking some basic information that could help your understanding as we go forward. For more info, check out these tutorials.

How to Solder: Through-Hole Soldering

This tutorial covers everything you need to know about through-hole soldering.

Installing an Arduino Library

How do I install a custom Arduino library? It's easy! This tutorial will go over how to install an Arduino library using the Arduino Library Manager. For libraries not linked with the Arduino IDE, we will also go over manually installing an Arduino library.

Binary

Binary is the numeral system of electronics and programming...so it must be important to learn. But, what is binary? How does it translate to other numeral systems like decimal?

How to Power a Project

A tutorial to help figure out the power requirements of your project.

Logic Levels

Learn the difference between 3.3V and 5V devices and logic levels.