LIDAR-Lite v3 Hookup Guide

Pages
Contributors: Shawn Hymel
Favorited Favorite 7

Troubleshooting

Arduino Output Error Poor Connection

Are you seeing this output from the LIDAR-Lite V3 I2C example code with the decoupling capacitors connected to the Arduino?

> nack
> nack
> nack

You probably do not have a secure connection between the Lidar and the Arduino. I2C is sensitive to its connection. The cable wires are thin and can disconnect when in the Arduino's female header from a bump. A breadboard seems to work fine if there is not a lot of mechanical vibrations. However, a small bump can mess up the timing for the I2C even on the breadboard.

For a secure connection, it is recommended soldering header pins with some heat shrink or make sort of adapter when connecting it to an Arduino. Once disconnected, the Arduino might stop outputting sensor data. You can reset the Arduino for testing but to prevent the wires from disconnecting, it would be better to solder the wires to header pins. This is a common "issue" with any I2C sensor and if they do not secure the wires, the Arduino will have problems talking with the Lidar Lite V3.

Break Away Headers - Straight

Break Away Headers - Straight

PRT-00116
$1.75
20
Heat Shrink Kit

Heat Shrink Kit

PRT-09353
$8.95
8

Arduino Output Error I2C Pull-Up Resistors

Another reason for the nack error may be that you need I2C pull-up resistors for the SCL and SDA lines. It depends on the length between the Arduino and I2C device but usually a 4.7kΩ resistor is a good start. For long runs or systems with lots of devices, it is recommended to use smaller resistors. You can also use a I2C bus extender for distances beyond the maximum bus length as well.

Resistor Kit - 1/4W (500 total)

Resistor Kit - 1/4W (500 total)

COM-10969
$8.95
187

SparkFun Differential I2C Breakout - PCA9615 (Qwiic)

BOB-14589
15 Retired

Decoupling Capacitor

Looking for a 680µF capacitor? Unfortunately, the SparkFun catalog does not include a 680µF capacitor. There are 1000µF capacitors, which can work as a substitute with the Lidar Lite.

SparkFun Capacitor Kit

SparkFun Capacitor Kit

KIT-13698
$8.95
13
Electrolytic Decoupling Capacitors - 1000uF/25V

Electrolytic Decoupling Capacitors - 1000uF/25V

COM-08982
$0.45
1

Or, you can also wire capacitors in series and parallel to get an equivalent capacitance.

Capacitors: Capacitors in Parallel

Dimensions

For more details on the dimensions, check out the links below.

Product Showcase Example for LIDAR-Lite V3 Wand

Looking for the example code used in the product video for the LIDAR-LIte V3? Nick Poole basically used the same parts and example code that was used with the Lidar Lite V2 Glasses. For the Lidar Lite V3 Wand, he used the following components:

He happened to have a 5V/16 MHz Pro Micro around when building the project for the Lidar Lite V2 Glasses. The parts were reused for the Lidar Lite V3 Wand. Try looking at the old wishlist for the Lidar Lite V2 Glasses for more information. Make sure to also add a 1kΩ resistor when using the PWM wiring as stated on page 3 of the user manual.

Additional Troubleshooting

Looking for additional troubleshooting tips and application notes related to the LIDAR Lite? Check out Garmin's support on the LIDAR Lite:

Application Notes on Reflective Surfaces

For more application notes on using the LIDAR-Lite v3/v3HP, check out the link below.

This can also be found in the operation & technical manual on page 11.