TPL5110 Nano Power Timer Hookup Guide

Pages
Contributors: Elias The Sparkiest
Favorited Favorite 2

Hardware Overview

Power and LiPo Battery

The Nano Power Timer can handle voltages between 1.8V - 5.5V and current up to 1.1 Amps. There are two options when connecting power to the Nano Power Timer. The first and more obvious option is the on board LiPo Battery Connector. The second is the VDD and GND pins on the five pin header underneath the IN label (short for INPUT). The power you provide to the INPUT side will flow out the OUTPUT side to power your microcontroller or project. If your using a LiPo battery, then do not attach another power source to these pins.

Power In Top Side Power In Bottom Side
Top Bottom

The OUT (OUTPUT) power is labeled VDD_OUT and GND. These pins will go to the board or project that you are powering.

Power Out Top View Power Out Bottom View
Top Bottom

Timer and Delay Switch

The Nano Power Timer's main function is to turn your microcontroller on after a set amount of time, continuously. The board has a six DIP switch that controls this time by changing resistance to the timer pin on the IC. To the left of the switch are five letters labeling each switch. On the underside of the board are these letters and the amount of time that is set when the corresponding switch is flipped.

DIP switch for Custom Time DIP switch for Custom Time Bottom Sidee
Top Bottom

This time is set when the board is powered up, so cycle power after you select your time. Check the table below to find a time suitable for your project.

Timer Switch Resistance
30 s A 16.2 kΩ
1 min B 22 kΩ
30 min C 93.1 kΩ
1 hr D 124 kΩ
2 hr E 169 kΩ
Custom F Custom

If you're time is not listed then we've left two additional pads for a custom time: one SMD and the other PTH. These two spaces are labeled with F on the product and their corresponding switch is labeled the same. If you decide to use them both at the same time their resistance is in parallel so make sure to calculate accordingly.

Custom Time SMD and PTH Locations for Resistor

More Timer Options

You are not limited to the times that are represented on the silk. Ignoring the Custom switch option, there are 26 possible combinations of switches aside from the five printed on the board that yield times from three seconds up to 15 minutes. The chart below gives you the combination of ON resistors, their combined resistance, and their approximate time. A few redundant resistances were ommited.

Timer Switch Combo Resistance
2-3 s A+B+C+D+E 7.579 kΩ
3-4 s A+B+C+D 7.933 kΩ
4 s A+B+C 8.470 kΩ
5 s A+B+E 8.844 kΩ
6 s A+B 9.329 kΩ
10 s A+C+D+E 11.563 kΩ
~12 s A+C+D 12.407 kΩ
~13 s A+C+E 12.742 kΩ
~15 s A+D+E 13.225 kΩ
~18 s A+C 13.774 kΩ
~19 s B+C+D+E 14.243 kΩ
20 s A+D 14.341 kΩ
~22 s A+E 14.790 kΩ
~25 s B+C+D 15.546 kΩ
~28 s B+C+E 16.075 kΩ
32 s B+D+E 16.852 kΩ
35 s B+C 17.754 kΩ
40 s B+D 18.707 kΩ
~45 s B+E 19.479 kΩ
~5 min C+D+E 40.400 kΩ
8 min C+D 52.995 kΩ
~12 min C+E 59.694 kΩ
15 min D+E 72.033 kΩ

Some of these times are approximate, but I have provided a Python script in the resources below to help you calculate what your exact time is. This will differ by small margins for each board due to the tolerance of the resistors.

Additional Timer Options From Datasheet

Below is the list of available times from the datasheet that are not included in the charts above. Of note are the timer options in the millisecond range. You can access these times by taking advantage of the two empty resistor pads on the Nano Power Timer.

Timer Resistance
100 ms 500 Ω
200 ms 1000 Ω
300 ms 1500 Ω
400 ms 2000 Ω
500 ms 2500 Ω
600 ms 3000 Ω
700 ms 3500 Ω
800 ms 4000 Ω
900 ms 4500 Ω
1 s 5.20 kΩ
2 s 6.79 kΩ
7 s 9.71 k Ω
8 s 10.18 kΩ
9 s 10.68 kΩ
30 s 16.78 kΩ
50 s 20.047 kΩ
2 min 29.35 kΩ
3 min 34.73 kΩ
4 min 39.11 kΩ
5 min 42.90 kΩ
6 min 46.29 kΩ
7 min 49.38 kΩ
9 min 54.92 kΩ
10 min 57.44 kΩ
20 min 77.57 kΩ
40 min 104.67 kΩ
50 min 115.33 kΩ
1 hr 30 min 149.39 kΩ

Push Button

The push button on the product will manually begin the timer. This allows you to test the timer and your project which should send an OFF signal to the Done pin.

Push Button

LED

There's a single red power LED on the topside of the product which indicates power is being supplied to the OUT pins. If you want to disconnect this LED, simply cut the trace between the jumper on the underside of the board labeled LED.

Power LED Power LED Jumper
Power LED Power LED Jumper

Header

Next to GND is the DONE pin that tells the product to turn your microcontroller or project off. To do this, your microcontroller or project will need to send a digital signal from LOW to HIGH to this pin. Finally, the DRV pin is active high and will start the timer of your project when the pin receives a HIGH signal. This is the same function as the on board push button. Not very many people will want to attach a different button, but if you wanted to, this would be the place.

Done and Drive Pin

How Do I Check the Exact Time?!

I've provided a simple Arduino sketch below to calculate the exact timing of the timer setting. You'll attach the VOUT pin to a digital I/O pin on your microcontroller and the sketch will start its timer when the power is high and end the timer when the power is off.