Weather Shield Hookup Guide
This Tutorial is Retired!
This tutorial covers concepts or technologies that are no longer current. It's still here for you to read and enjoy, but may not be as useful as our newest tutorials.
View the updated tutorial: Arduino Weather Shield Hookup Guide V12
Example Firmware - Weather Station
For the more adventurous, we have the Weather Station example. This code demonstrates all the bells and whistles of the shield. You will need a weather station hooked up to see the wind speed, wind direction and rain values change.
/* Weather Shield Example By: Nathan Seidle SparkFun Electronics Date: November 16th, 2013 License: This code is public domain but you buy me a beer if you use this and we meet someday (Beerware license). Much of this is based on Mike Grusin's USB Weather Board code: https://www.sparkfun.com/products/10586 This is a more advanced example of how to utilize every aspect of the weather shield. See the basic example if you're just getting started. This code reads all the various sensors (wind speed, direction, rain gauge, humidty, pressure, light, batt_lvl) and reports it over the serial comm port. This can be easily routed to an datalogger (such as OpenLog) or a wireless transmitter (such as Electric Imp). Measurements are reported once a second but windspeed and rain gauge are tied to interrupts that are calcualted at each report. This example code assumes the GPS module is not used. */ MPL3115A2 myPressure; //Create an instance of the pressure sensor HTU21D myHumidity; //Create an instance of the humidity sensor //Hardware pin definitions //-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // digital I/O pins const byte WSPEED = 3; const byte RAIN = 2; const byte STAT1 = 7; const byte STAT2 = 8; // analog I/O pins const byte REFERENCE_3V3 = A3; const byte LIGHT = A1; const byte BATT = A2; const byte WDIR = A0; //-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= //Global Variables //-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= long lastSecond; //The millis counter to see when a second rolls by byte seconds; //When it hits 60, increase the current minute byte seconds_2m; //Keeps track of the "wind speed/dir avg" over last 2 minutes array of data byte minutes; //Keeps track of where we are in various arrays of data byte minutes_10m; //Keeps track of where we are in wind gust/dir over last 10 minutes array of data long lastWindCheck = 0; volatile long lastWindIRQ = 0; volatile byte windClicks = 0; //We need to keep track of the following variables: //Wind speed/dir each update (no storage) //Wind gust/dir over the day (no storage) //Wind speed/dir, avg over 2 minutes (store 1 per second) //Wind gust/dir over last 10 minutes (store 1 per minute) //Rain over the past hour (store 1 per minute) //Total rain over date (store one per day) byte windspdavg[120]; //120 bytes to keep track of 2 minute average int winddiravg[WIND_DIR_AVG_SIZE]; //120 ints to keep track of 2 minute average float windgust_10m[10]; //10 floats to keep track of 10 minute max int windgustdirection_10m[10]; //10 ints to keep track of 10 minute max volatile float rainHour[60]; //60 floating numbers to keep track of 60 minutes of rain //These are all the weather values that wunderground expects: int winddir = 0; // [0-360 instantaneous wind direction] float windspeedmph = 0; // [mph instantaneous wind speed] float windgustmph = 0; // [mph current wind gust, using software specific time period] int windgustdir = 0; // [0-360 using software specific time period] float windspdmph_avg2m = 0; // [mph 2 minute average wind speed mph] int winddir_avg2m = 0; // [0-360 2 minute average wind direction] float windgustmph_10m = 0; // [mph past 10 minutes wind gust mph ] int windgustdir_10m = 0; // [0-360 past 10 minutes wind gust direction] float humidity = 0; // [%] float tempf = 0; // [temperature F] float rainin = 0; // [rain inches over the past hour)] -- the accumulated rainfall in the past 60 min volatile float dailyrainin = 0; // [rain inches so far today in local time] //float baromin = 30.03;// [barom in] - It's hard to calculate baromin locally, do this in the agent float pressure = 0; //float dewptf; // [dewpoint F] - It's hard to calculate dewpoint locally, do this in the agent float batt_lvl = 11.8; //[analog value from 0 to 1023] float light_lvl = 455; //[analog value from 0 to 1023] // volatiles are subject to modification by IRQs volatile unsigned long raintime, rainlast, raininterval, rain; //-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= //Interrupt routines (these are called by the hardware interrupts, not by the main code) //-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= void rainIRQ() // Count rain gauge bucket tips as they occur // Activated by the magnet and reed switch in the rain gauge, attached to input D2 { raintime = millis(); // grab current time raininterval = raintime - rainlast; // calculate interval between this and last event if (raininterval > 10) // ignore switch-bounce glitches less than 10mS after initial edge { dailyrainin += 0.011; //Each dump is 0.011" of water rainHour[minutes] += 0.011; //Increase this minute's amount of rain rainlast = raintime; // set up for next event } } void wspeedIRQ() // Activated by the magnet in the anemometer (2 ticks per rotation), attached to input D3 { if (millis() - lastWindIRQ > 10) // Ignore switch-bounce glitches less than 10ms (142MPH max reading) after the reed switch closes { lastWindIRQ = millis(); //Grab the current time windClicks++; //There is 1.492MPH for each click per second. } } void setup() { Serial.begin(9600); Serial.println("Weather Shield Example"); pinMode(STAT1, OUTPUT); //Status LED Blue pinMode(STAT2, OUTPUT); //Status LED Green pinMode(WSPEED, INPUT_PULLUP); // input from wind meters windspeed sensor pinMode(RAIN, INPUT_PULLUP); // input from wind meters rain gauge sensor pinMode(REFERENCE_3V3, INPUT); pinMode(LIGHT, INPUT); //Configure the pressure sensor myPressure.begin(); // Get sensor online myPressure.setModeBarometer(); // Measure pressure in Pascals from 20 to 110 kPa myPressure.setOversampleRate(7); // Set Oversample to the recommended 128 myPressure.enableEventFlags(); // Enable all three pressure and temp event flags //Configure the humidity sensor myHumidity.begin(); seconds = 0; lastSecond = millis(); // attach external interrupt pins to IRQ functions attachInterrupt(0, rainIRQ, FALLING); attachInterrupt(1, wspeedIRQ, FALLING); // turn on interrupts interrupts(); Serial.println("Weather Shield online!"); } void loop() { //Keep track of which minute it is if(millis() - lastSecond >= 1000) { digitalWrite(STAT1, HIGH); //Blink stat LED lastSecond += 1000; //Take a speed and direction reading every second for 2 minute average if(++seconds_2m > 119) seconds_2m = 0; //Calc the wind speed and direction every second for 120 second to get 2 minute average float currentSpeed = get_wind_speed(); windspeedmph = currentSpeed; //update global variable for windspeed when using the printWeather() function //float currentSpeed = random(5); //For testing int currentDirection = get_wind_direction(); windspdavg[seconds_2m] = (int)currentSpeed; winddiravg[seconds_2m] = currentDirection; //if(seconds_2m % 10 == 0) displayArrays(); //For testing //Check to see if this is a gust for the minute if(currentSpeed > windgust_10m[minutes_10m]) { windgust_10m[minutes_10m] = currentSpeed; windgustdirection_10m[minutes_10m] = currentDirection; } //Check to see if this is a gust for the day if(currentSpeed > windgustmph) { windgustmph = currentSpeed; windgustdir = currentDirection; } if(++seconds > 59) { seconds = 0; if(++minutes > 59) minutes = 0; if(++minutes_10m > 9) minutes_10m = 0; rainHour[minutes] = 0; //Zero out this minute's rainfall amount windgust_10m[minutes_10m] = 0; //Zero out this minute's gust } //Report all readings every second printWeather(); digitalWrite(STAT1, LOW); //Turn off stat LED } delay(100); } //Calculates each of the variables that wunderground is expecting void calcWeather() { //Calc winddir winddir = get_wind_direction(); //Calc windspeed //windspeedmph = get_wind_speed(); //This is calculated in the main loop on line 179 //Calc windgustmph //Calc windgustdir //These are calculated in the main loop //Calc windspdmph_avg2m float temp = 0; for(int i = 0 ; i < 120 ; i++) temp += windspdavg[i]; temp /= 120.0; windspdmph_avg2m = temp; //Calc winddir_avg2m, Wind Direction //You can't just take the average. Google "mean of circular quantities" for more info //We will use the Mitsuta method because it doesn't require trig functions //And because it sounds cool. //Based on: http://abelian.org/vlf/bearings.html //Based on: http://stackoverflow.com/questions/1813483/averaging-angles-again long sum = winddiravg[0]; int D = winddiravg[0]; for(int i = 1 ; i < WIND_DIR_AVG_SIZE ; i++) { int delta = winddiravg[i] - D; if(delta < -180) D += delta + 360; else if(delta > 180) D += delta - 360; else D += delta; sum += D; } winddir_avg2m = sum / WIND_DIR_AVG_SIZE; if(winddir_avg2m >= 360) winddir_avg2m -= 360; if(winddir_avg2m < 0) winddir_avg2m += 360; //Calc windgustmph_10m //Calc windgustdir_10m //Find the largest windgust in the last 10 minutes windgustmph_10m = 0; windgustdir_10m = 0; //Step through the 10 minutes for(int i = 0; i < 10 ; i++) { if(windgust_10m[i] > windgustmph_10m) { windgustmph_10m = windgust_10m[i]; windgustdir_10m = windgustdirection_10m[i]; } } //Calc humidity humidity = myHumidity.readHumidity(); //float temp_h = myHumidity.readTemperature(); //Serial.print(" TempH:"); //Serial.print(temp_h, 2); //Calc tempf from pressure sensor tempf = myPressure.readTempF(); //Serial.print(" TempP:"); //Serial.print(tempf, 2); //Total rainfall for the day is calculated within the interrupt //Calculate amount of rainfall for the last 60 minutes rainin = 0; for(int i = 0 ; i < 60 ; i++) rainin += rainHour[i]; //Calc pressure pressure = myPressure.readPressure(); //Calc dewptf //Calc light level light_lvl = get_light_level(); //Calc battery level batt_lvl = get_battery_level(); } //Returns the voltage of the light sensor based on the 3.3V rail //This allows us to ignore what VCC might be (an Arduino plugged into USB has VCC of 4.5 to 5.2V) float get_light_level() { float operatingVoltage = analogRead(REFERENCE_3V3); float lightSensor = analogRead(LIGHT); operatingVoltage = 3.3 / operatingVoltage; //The reference voltage is 3.3V lightSensor = operatingVoltage * lightSensor; return(lightSensor); } //Returns the voltage of the raw pin based on the 3.3V rail //This allows us to ignore what VCC might be (an Arduino plugged into USB has VCC of 4.5 to 5.2V) //Battery level is connected to the RAW pin on Arduino and is fed through two 5% resistors: //3.9K on the high side (R1), and 1K on the low side (R2) float get_battery_level() { float operatingVoltage = analogRead(REFERENCE_3V3); float rawVoltage = analogRead(BATT); operatingVoltage = 3.30 / operatingVoltage; //The reference voltage is 3.3V rawVoltage = operatingVoltage * rawVoltage; //Convert the 0 to 1023 int to actual voltage on BATT pin rawVoltage *= 4.90; //(3.9k+1k)/1k - multiple BATT voltage by the voltage divider to get actual system voltage return(rawVoltage); } //Returns the instataneous wind speed float get_wind_speed() { float deltaTime = millis() - lastWindCheck; //750ms deltaTime /= 1000.0; //Covert to seconds float windSpeed = (float)windClicks / deltaTime; //3 / 0.750s = 4 windClicks = 0; //Reset and start watching for new wind lastWindCheck = millis(); windSpeed *= 1.492; //4 * 1.492 = 5.968MPH /* Serial.println(); Serial.print("Windspeed:"); Serial.println(windSpeed);*/ return(windSpeed); } //Read the wind direction sensor, return heading in degrees int get_wind_direction() { unsigned int adc; adc = analogRead(WDIR); // get the current reading from the sensor // The following table is ADC readings for the wind direction sensor output, sorted from low to high. // Each threshold is the midpoint between adjacent headings. The output is degrees for that ADC reading. // Note that these are not in compass degree order! See Weather Meters datasheet for more information. if (adc < 380) return (113); if (adc < 393) return (68); if (adc < 414) return (90); if (adc < 456) return (158); if (adc < 508) return (135); if (adc < 551) return (203); if (adc < 615) return (180); if (adc < 680) return (23); if (adc < 746) return (45); if (adc < 801) return (248); if (adc < 833) return (225); if (adc < 878) return (338); if (adc < 913) return (0); if (adc < 940) return (293); if (adc < 967) return (315); if (adc < 990) return (270); return (-1); // error, disconnected? } //Prints the various variables directly to the port //I don't like the way this function is written but Arduino doesn't support floats under sprintf void printWeather() { calcWeather(); //Go calc all the various sensors Serial.println(); Serial.print("$,winddir="); Serial.print(winddir); Serial.print(",windspeedmph="); Serial.print(windspeedmph, 1); Serial.print(",windgustmph="); Serial.print(windgustmph, 1); Serial.print(",windgustdir="); Serial.print(windgustdir); Serial.print(",windspdmph_avg2m="); Serial.print(windspdmph_avg2m, 1); Serial.print(",winddir_avg2m="); Serial.print(winddir_avg2m); Serial.print(",windgustmph_10m="); Serial.print(windgustmph_10m, 1); Serial.print(",windgustdir_10m="); Serial.print(windgustdir_10m); Serial.print(",humidity="); Serial.print(humidity, 1); Serial.print(",tempf="); Serial.print(tempf, 1); Serial.print(",rainin="); Serial.print(rainin, 2); Serial.print(",dailyrainin="); Serial.print(dailyrainin, 2); Serial.print(",pressure="); Serial.print(pressure, 2); Serial.print(",batt_lvl="); Serial.print(batt_lvl, 2); Serial.print(",light_lvl="); Serial.print(light_lvl, 2); Serial.print(","); Serial.println(" }
Open the Serial Monitor, and you should see an output string every second containing the current weather information:
$,winddir=0,windspeedmph=0,windspdmph_avg2m=0.0,winddir_avg2m=0,windgustmph_10m=0.0,windgustdir_10m=0,humidity=31.7,tempf=76.3,rainin=0.00,dailyrainin=0.00,pressure=81525.25,batt_lvl=4.32,light_lvl=2.03,# $,winddir=0,windspeedmph=0,windspdmph_avg2m=0.0,winddir_avg2m=0,windgustmph_10m=0.0,windgustdir_10m=0,humidity=31.7,tempf=76.3,rainin=0.00,dailyrainin=0.00,pressure=81520.75,batt_lvl=4.32,light_lvl=2.02,# $,winddir=0,windspeedmph=0,windspdmph_avg2m=0.0,winddir_avg2m=0,windgustmph_10m=0.0,windgustdir_10m=0,humidity=31.7,tempf=76.3,rainin=0.00,dailyrainin=0.00,pressure=81517.50,batt_lvl=4.34,light_lvl=2.11,# $,winddir=0,windspeedmph=0,windspdmph_avg2m=0.0,winddir_avg2m=0,windgustmph_10m=0.0,windgustdir_10m=0,humidity=31.7,tempf=76.3,rainin=0.00,dailyrainin=0.00,pressure=81509.25,batt_lvl=4.31,light_lvl=2.11,#
The $
and #
are start and stop characters. These types of bytes are used to make it easy to parse out the data. For example, you could have an Electric Imp listen for a $
and record the data until you see a #
. Once you have the string then split on the commas (also known as comma delimited), and start recording the next string.