SparkFun RTK Facet Hookup Guide

Pages
Contributors: Nate
Favorited Favorite 4

Hardware Overview - Advanced Features

RTK Facet Circuit Boards

The boards that make up the RTK Facet

The RTK Facet is a hacker’s delight. Under the hood of the RTK Facet is an ESP32 WROOM connected to a ZED-F9P as well as some peripheral hardware (LiPo fuel gauge, microSD, etc). It is programmed in Arduino and can be tailored by the end user to fit their needs.

RTK Facet Schematic

Click on the image to get a closer look at the Schematic!

Internal RTK Facet Antenna

The Facet with three sub boards, the battery, and antenna

ZED-F9P GNSS Receiver

The ZED-F9P GNSS receiver is configured over I2C and uses two UARTs to output NMEA (UART1) and input/output RTCM (UART2). In general, the ESP32 harvests the data from the ZED-F9Ps UART1 for Bluetooth transmission and logging to SD.

ESP32

The ESP32 uses a standard USB to serial conversion IC (CH340) to program the device. You can use the ESP32 core for Arduino or Espressif’s IoT Development Framework (IDF).

The CH340 automatically resets and puts the ESP32 into bootload mode as needed. However, the reset pin of the ESP32 is brought out to an external 2-pin 0.1” footprint if an external reset button is needed.

LiPo and Charging

The RTK Facet houses a standard 6000mAh 3.7V LiPo. The charge circuit is set to 1A so with an appropriate power source, charging an empty battery should take a little over six hours. USB C on the RTK Facet is configured for 2A draw so if the user attaches to a USB 3.0 port, the charge circuit should operate near the 1A max. If a user attaches to a USB 2.0 port, the charge circuit will operate at 500mA. This charge circuit also incorporates a 42C upper temperature cutoff to insure the LiPo cannot be charged in dangerous conditions.

Fuel Gauge

The MAX17048 is a simple to use fuel gauge IC that gives the user a statement of charge (SOC) that is basically a 0 to 100% report. The MAX17048 has a sophisticated algorithm to figure out what the SOC is based on cell voltage that is beyond the scope of this tutorial but for our purposes, allows us to reliably view the battery level when the unit is on.

Qwiic

An internal Qwiic connector is included in the unit for future expansion. Currently the stock RTK Facet does not support any additional Qwiic sensors or display but users may add support for their own application.

microSD

A microSD socket is situated on the ESP32 SPI bus. Any microSD up to 32GB is supported. RTK Facet supports RAWX and NMEA logging to the SD card. Max logging time can also be set (default is 24 hours) to avoid multi-gigabyte text files. For more information about RAWX and doing PPP please see this tutorial.

Data Port and Digital Mux

The 74HC4052 analog mux controls which digital signals route to the external Data port. This allows a variety of custom end user applications. The most interesting of which is event logging. Because the ZED-F9P has microsecond accuracy of the incoming digital signal, custom firmware can be created to triangulate an event based on the receiver's position and the time delay between multiple captured events. Currently, TM2 event logging is supported.

Additionally, this mux can be configured to connect ESP pin 26 (DAC capable) and pin 39 (ADC capable) for end user custom applications.