SparkFun MicroMod Input and Display Carrier Board Hookup Guide

Pages
Contributors: Alex the Giant, Ell C
Favorited Favorite 3

Hardware Overview

In this section we'll cover the various hardware and sensors included on the MicroMod Input & Display Carrier Board.

Common Components

Most SparkFun MicroMod Carriers will have some common components and all MicroMod Carriers will have the keyed M.2 MicroMod Connector to plug your processor into. The photo and list below outline some of the components you can expect on most SparkFun MicroMod Carriers.

  • M.2 MicroMod Connector - This special keyed M.2 connector lets you install your MicroMod Processor of choice on your Input & Display Carrier Board.
  • USB-C Connector - Connect to your computer to program your Processor and also can provide power to your MicroMod system.
  • 3.3V Regulator - Provides a regulated 3.3V and sources up to 1A.
  • Qwiic Connector - The standard Qwiic connector so you can add other Qwiic devices to your MicroMod system.
  • Boot/Reset Buttons - Push buttons to enter Boot Mode on Processor boards and to Reset your MicroMod circuit. More information needed - LAC
  • microSD Slot - Insert a microSD card for reading and writing data.

Annotated Photo of common hardware

Power

The Input and Display Carrier Board takes an input voltage range from 2.7V - 6V via the USB-C connector. We've incorporated a power regulation circuit that caps the voltage for power sensitive circuits and the Qwiic connector.

Input & Display Carrier Board Specific Components

ATTiny84

We've populated this carrier board with Atmel's ATtiny84 with 8kB of programmable flash. This little guy is preprogrammed to communicate with the processor over I2C to read button presses.

ATTiny is highlighted

TFT Display

4DLCD's 24320240-IPS is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). The module display area measures 2.4" and contains 240 x 320 pixels.

Note: IPS displays have higher display quality, better colors, and much better viewing angles than their non-IPS counterparts.

4DLCD screen

LEDs

The Input and Display Carrier Board has 6 Addressable APA102 LEDs.

APA102 LEDs

Input Buttons

Button button, who's got the button? We do! We have two input buttons (A and B), and a 5 way switch that allows you to navigate a UI or play an onboard game.

A Button, B button, and 5 way button

JTAG Debugging

We've populated the JTAG footprint for more advanced users who need breakpoint level debugging. We recommend checking out our JTAG section for the compatible JTAG programmer and debugger.

JTAG debugging pins

Jumpers

Jumpers are highlighted

I2C Jumper

If you are daisy-chaining multiple Qwiic devices, you will want to cut this jumper; if multiple sensors are connected to the bus with the pull-up resistors enabled, the parallel equivalent resistance could create too strong of a pull-up for the bus to operate correctly. As a general rule of thumb, disable all but one pair of pull-up resistors if multiple devices are connected to the bus. To disable the pull up resistors, use an X-acto knife to cut the joint between the two jumper pads highlighted below.

PWR Jumper

Cutting this jumper will disable the "Power" LED on the front of the board.

3V3CTRL Jumper

Many of the MicroMod carrier boards have an RTC backup battery on board and as part of the standardized voltage regulation circuit we include a 3V3 jumper that, when closed, allows you to control the 3V3 control regulator. This shuts down everything on the 3V3 rail but the battery keeps the processor awake. The Input and Display Carrier Board does not have a backup battery, so this jumper should remain open.

BYP Jumper

If you really, really, REALLY need more power, closing this jumper will bypass the 2A fuse. Close at your own risk!

Measure Jumper

Want to measure the juice running through your circuits? Cut the trace between these PTH pads in order to measure the current with a Digital MultiMeter.

PinOuts

Note: You may not recognize the COPI/CIPO labels for SPI pins. SparkFun is working to move away from using MISO/MOSI to describe signals between the controller and the peripheral. Check out this page for more on our reasoning behind this change.
AUDIO UART GPIO/BUS I2C SDIO SPI Dedicated
Function Bottom
Pin
   Top   
Pin
Function
(Not Connected) 75 GND
3.3V 74 73 G5 / BUS5
RTC_3V_BATT 72 71 G6 / BUS6
SPI_CS1# SDIO_DATA3 (I/O) 70 69 G7 / BUS7
SDIO_DATA2 (I/O) 68 67 G8
SDIO_DATA1 (I/O) 66 65 G9 ADC_D- CAM_HSYNC
SPI_CIPO1 SDIO_DATA0 (I/O) 64 63 G10 ADC_D+ CAM_VSYNC
SPI COPI1 SDIO_CMD (I/O) 62 61 SPI_CIPO (I)
SPI SCK1 SDIO_SCK (O) 60 59 SPI_COPI (O) LED_DAT
AUD_MCLK (O) 58 57 SPI_SCK (O) LED_CLK
CAM_MCLK PCM_OUT I2S_OUT AUD_OUT 56 55 SPI_CS#
CAM_PCLK PCM_IN I2S_IN AUD_IN 54 53 I2C_SCL1 (I/O)
PDM_DATA PCM_SYNC I2S_WS AUD_LRCLK 52 51 I2C_SDA1 (I/O)
PDM_CLK PCM_CLK I2S_SCK AUD_BCLK 50 49 BATT_VIN / 3 (I - ADC) (0 to 3.3V)
G4 / BUS4 48 47 PWM1
G3 / BUS3 46 45 GND
G2 / BUS2 44 43 CAN_TX
G1 / BUS1 42 41 CAN_RX
G0 / BUS0 40 39 GND
A1 38 37 USBHOST_D-
GND 36 35 USBHOST_D+
A0 34 33 GND
PWM0 32 31 Module Key
Module Key 30 29 Module Key
Module Key 28 27 Module Key
Module Key 26 25 Module Key
Module Key 24 23 SWDIO
UART_TX2 (O) 22 21 SWDCK
UART_RX2 (I) 20 19 UART_RX1 (I)
CAM_TRIG D1 18 17 UART_TX1 (0)
I2C_INT# 16 15 UART_CTS1 (I)
I2C_SCL (I/0) 14 13 UART_RTS1 (O)
I2C_SDA (I/0) 12 11 BOOT (I - Open Drain)
D0 10 9 USB_VIN
SWO G11 8 7 GND
RESET# (I - Open Drain) 6 5 USB_D-
3.3V_EN 4 3 USB_D+
3.3V 2 1 GND
Notes Primary Function Bottom Pin    Top    Pin Primary Function Notes
61 SPI_CIPO
59 SPI_COPI
57 SPI_SCK
55 SPI_CS# microSD Chipselect#
47 PWM1 Buzzer
Display Reset# G2/BUS2 44 43 CAN-TX
APA102 Data G1 / BUS1 42 41 CAN_RX
APA102 Clock G0 / BUS0 40 39 GND
A1 38
A0 34
Display Backlight# PWM0 32
23 SWDIO
21 SWDCK
19 UART_RX1
Display D/C D1/CAM_TRIG 18 17 UART_TX1
I2C_Interrupt 16
I2C_SCL 14
I2C_SDA 12 11 BOOT
Display Chipselect# D0 10 9 USB_VIN
7 GND
RESET 6 5 USB_D-
3.3V_EN 4 3 USB_D+
3.3V 2 1 GND
Signal Group Signal I/O Description Voltage
Power 3.3V I 3.3V Source 3.3V
GND Return current path 0V
USB_VIN I USB VIN compliant to USB 2.0 specification. Connect to pins on processor board that require 5V for USB functionality 4.8-5.2V
RTC_3V_BATT I 3V provided by external coin cell or mini battery. Max draw=100μA. Connect to pins maintaining an RTC during power loss. Can be left NC. 3V
3.3V_EN O Controls the carrier board's main voltage regulator. Voltage above 1V will enable 3.3V power path. 3.3V
BATT_VIN/3 I Carrier board raw voltage over 3. 1/3 resistor divider is implemented on carrier board. Amplify the analog signal as needed for full 0-3.3V range 3.3V
Reset Reset I Input to processor. Open drain with pullup on processor board. Pulling low resets processor. 3.3V
Boot I Input to processor. Open drain with pullup on processor board. Pulling low puts processor into special boot mode. Can be left NC. 3.3V
USB USB_D± I/O USB Data ±. Differential serial data interface compliant to USB 2.0 specification. If UART is required for programming, USB± must be routed to a USB-to-serial conversion IC on the processor board.
USB Host USBHOST_D± I/O For processors that support USB Host Mode. USB Data±. Differential serial data interface compliant to USB 2.0 specification. Can be left NC.
CAN CAN_RX I CAN Bus receive data. 3.3V
CAN_TX O CAN Bus transmit data. 3.3V
UART UART_RX1 I UART receive data. 3.3V
UART_TX1 O UART transmit data. 3.3V
UART_RTS1 O UART ready to send. 3.3V
UART_CTS1 I UART clear to send. 3.3V
UART_RX2 I 2nd UART receive data. 3.3V
UART_TX2 O 2nd UART transmit data. 3.3V
I2C I2C_SCL I/O I2C clock. Open drain with pullup on carrier board. 3.3V
I2C_SDA I/O I2C data. Open drain with pullup on carrier board 3.3V
I2C_INT# I Interrupt notification from carrier board to processor. Open drain with pullup on carrier board. Active LOW 3.3V
I2C_SCL1 I/O 2nd I2C clock. Open drain with pullup on carrier board. 3.3V
I2C_SDA1 I/O 2nd I2C data. Open drain with pullup on carrier board. 3.3V
SPI SPI_COPI O SPI Controller Output/Peripheral Input. 3.3V
SPI_CIPO I SPI Controller Input/Peripheral Output. 3.3V
SPI_SCK O SPI Clock. 3.3V
SPI_CS# O SPI Chip Select. Active LOW. Can be routed to GPIO if hardware CS is unused. 3.3V
SPI/SDIO SPI_SCK1/SDIO_CLK O 2nd SPI Clock. Secondary use is SDIO Clock. 3.3V
SPI_COPI1/SDIO_CMD I/O 2nd SPI Controller Output/Peripheral Input. Secondary use is SDIO command interface. 3.3V
SPI_CIPO1/SDIO_DATA0 I/O 2nd SPI Peripheral Input/Controller Output. Secondary use is SDIO data exchange bit 0. 3.3V
SDIO_DATA1 I/O SDIO data exchange bit 1. 3.3V
SDIO_DATA2 I/O SDIO data exchange bit 2. 3.3V
SPI_CS1/SDIO_DATA3 I/O 2nd SPI Chip Select. Secondary use is SDIO data exchange bit 3. 3.3V
Audio AUD_MCLK O Audio master clock. 3.3V
AUD_OUT/PCM_OUT/I2S_OUT/CAM_MCLK O Audio data output. PCM synchronous data output. I2S serial data out. Camera master clock. 3.3V
AUD_IN/PCM_IN/I2S_IN/CAM_PCLK I Audio data input. PCM syncrhonous data input. I2S serial data in. Camera periphperal clock. 3.3V
AUD_LRCLK/PCM_SYNC/I2S_WS/PDM_DATA I/O Audio left/right clock. PCM syncrhonous data SYNC. I2S word select. PDM data. 3.3V
AUD_BCLK/PCM_CLK/I2S_CLK/PDM_CLK O Audio bit clock. PCM clock. I2S continuous serial clock. PDM clock. 3.3V
SWD SWDIO I/O Serial Wire Debug I/O. Connect if processor board supports SWD. Can be left NC. 3.3V
SWDCK I Serial Wire Debug clock. Connect if processor board supports SWD. Can be left NC. 3.3V
ADC A0 I Analog to digital converter 0. Amplify the analog signal as needed to enable full 0-3.3V range. 3.3V
A1 I Analog to digital converter 1. Amplify the analog signal as needed to enable full 0-3.3V range. 3.3V
PWM PWM0 O Pulse width modulated output 0. 3.3V
PWM1 O Pulse width modulated output 1. 3.3V
Digital D0 I/O General digital input/output pin. 3.3V
D1/CAM_TRIG I/O General digital input/output pin. Camera trigger. 3.3V
General/Bus G0/BUS0 I/O General purpose pins. Any unused processor pins should be assigned to Gx with ADC + PWM capable pins given priority (0, 1, 2, etc.) positions. The intent is to guarantee PWM, ADC and Digital Pin functionality on respective ADC/PWM/Digital pins. Gx pins do not guarantee ADC/PWM function. Alternative use is pins can support a fast read/write 8-bit or 4-bit wide bus. 3.3V
G1/BUS1 I/O 3.3V
G2/BUS2 I/O 3.3V
G3/BUS3 I/O 3.3V
G4/BUS4 I/O 3.3V
G5/BUS5 I/O 3.3V
G6/BUS6 I/O 3.3V
G7/BUS7 I/O 3.3V
G8 I/O General purpose pin 3.3V
G9/ADC_D-/CAM_HSYNC I/O Differential ADC input if available. Camera horizontal sync. 3.3V
G10/ADC_D+/CAM_VSYNC I/O Differential ADC input if available. Camera vertical sync. 3.3V
G11/SWO I/O General purpose pin. Serial Wire Output 3.3V

Board Dimensions

The Input and Display Carrier Board measures 3.25 inches by 2.25 inches.

MicroMod Input and Display Carrier Board Dimensions