Qwiic Carrier Board Hookup Guide

Pages
Contributors: santaimpersonator, MAKIN-STUFF
Favorited Favorite 0

Hardware Overview

This section will cover the various hardware components and solder jumpers on the MicroMod Qwiic Carrier Board. It will also review the connections of the M.2 connector and how it interfaces with a MicroMod Processor.

Board Dimensions

The Qwiic Carrier Board dimensions are:

  • Single: 3.15" x 1.40" (80.00mm x 35.56mm)
  • Double: 4.10" x 1.40" (109.22mm x 35.56mm)

MicroMod Qwiic carrier board dimensions - single

MicroMod Qwiic carrier board dimensions - double
Dimensions of the MicroMod Qwiic Carrier Board. (Click to enlarge)

The boards also include mounting holes and inserts for a standard 4-40 screw. The inserts are arranged to mount, attach, and/or stack compatible (1" x 1") Qwiic boards.

Photo highlighting inserts layout - single
Photo highlighting inserts layout - double

Mounting areas on the MicroMod Qwiic Carrier Board to attach Qwiic devices. (Click to enlarge)

Common Components

Most SparkFun MicroMod Carrier Boards will have some common components and all MicroMod Carrier Boards will have the keyed M.2 MicroMod connector for a Processor board. The photo and list below outline the common components between the Qwiic carrier board and other MicroMod Carrier Boards.

  • M.2 MicroMod Connector - This special keyed M.2 connector lets you install your MicroMod Processor of choice to the Qwiic Carrier Board.
  • USB-C Connector - Connect to your computer to program your processor and provide power to the board.
  • 3.3V Regulator - Provides a regulated 3.3V and sources up to 1A.
  • Qwiic Connectors - The standard Qwiic connectors to connect other Qwiic devices for your MicroMod project.
  • Boot/Reset Buttons - Push buttons to enter boot mode on processors and to reset your MicroMod circuit.

Annotated photo for common components on the Qwiic carrier board
Common MicroMod components featured on the MicroMod Qwiic Carrier Board. (Click to enlarge)

Battery Charger

The board also has a MCP73831 Single-Cell Lithium-Ion/Lithium-Polymer Charge IC so you can charge an attached single-cell LiPo battery. The charge IC receives power from the USB connection and can source up to 450mA to charge an attached battery.

Photo highlighting the charging circuit
Batery charger for the MicroMod Qwiic Carrier Board. (Click to enlarge)

Status LEDs

The carrier board has two status LEDs:

  • PWR - This LED indicates when 3.3V power is available top the board.
  • CHG - This LED indicates the status of the charging circuit operation.

Photo highlighting the status LEDs
Status LEDs on the MicroMod Qwiic Carrier Board. (Click to enlarge)

Solder Jumpers

Users who have never worked with soldering jumpers and cutting PCB traces before (or for a quick refresher), check out our How to Work with Solder Jumpers and PCB Traces tutorial for detailed instructions and tips.

There are four adjustable solder jumpers on the MicroMod Qwiic Carrier Board labeled MEAS, BYP, 3.3V_VE and 3.3V. The table below briefly outlines their functionalities:

Jumper Name/Label Description Default State
Measure/MEAS Open this jumper to probe the current draw at the 3.3V output of the regulator. For help measuring current, take a look at our How to Use a Multimeter tutorial. CLOSED
Bypass/BYP The "penny-in-the-fuse" jumper. Bypasses the 6V/2A fuse and nets VIN and V_USB together. Close only if you know what you are doing! OPEN
Voltage Regulator Enable/VE Voltage regulator control. Close this jumper to control the VREG in low-power applications. OPEN
3.3V LED Power/3V3 LED Connects the 3.3V LED to 3.3V via a 1K Ohm resistor. Open to disable the LED. CLOSED

Jumpers
Jumpers on the MicroMod Qwiic carrier board. (Click to enlarge)

MicroMod Pinout

Since this Carrier Board is designed to work with all of the MicroMod Processors we've included the table below to outline which pins are used so, if you would like, you can compare them to the pinout tables in their respective Hookup Guides.

AUDIO UART GPIO/BUS I2C SDIO SPI Dedicated
Function Bottom
Pin
   Top   
Pin
Function
(Not Connected) 75 GND
3.3V 74 73 G5 / BUS5
RTC_3V_BATT 72 71 G6 / BUS6
SPI_CS1# SDIO_DATA3 (I/O) 70 69 G7 / BUS7
SDIO_DATA2 (I/O) 68 67 G8
SDIO_DATA1 (I/O) 66 65 G9 ADC_D- CAM_HSYNC
SPI_CIPO1 SDIO_DATA0 (I/O) 64 63 G10 ADC_D+ CAM_VSYNC
SPI COPI1 SDIO_CMD (I/O) 62 61 SPI_CIPO (I)
SPI SCK1 SDIO_SCK (O) 60 59 SPI_COPI (O) LED_DAT
AUD_MCLK (O) 58 57 SPI_SCK (O) LED_CLK
CAM_MCLK PCM_OUT I2S_OUT AUD_OUT 56 55 SPI_CS#
CAM_PCLK PCM_IN I2S_IN AUD_IN 54 53 I2C_SCL1 (I/O)
PDM_DATA PCM_SYNC I2S_WS AUD_LRCLK 52 51 I2C_SDA1 (I/O)
PDM_CLK PCM_CLK I2S_SCK AUD_BCLK 50 49 BATT_VIN / 3 (I - ADC) (0 to 3.3V)
G4 / BUS4 48 47 PWM1
G3 / BUS3 46 45 GND
G2 / BUS2 44 43 CAN_TX
G1 / BUS1 42 41 CAN_RX
G0 / BUS0 40 39 GND
A1 38 37 USBHOST_D-
GND 36 35 USBHOST_D+
A0 34 33 GND
PWM0 32 31 Module Key
Module Key 30 29 Module Key
Module Key 28 27 Module Key
Module Key 26 25 Module Key
Module Key 24 23 SWDIO
UART_TX2 (O) 22 21 SWDCK
UART_RX2 (I) 20 19 UART_RX1 (I)
CAM_TRIG D1 18 17 UART_TX1 (0)
I2C_INT# 16 15 UART_CTS1 (I)
I2C_SCL (I/0) 14 13 UART_RTS1 (O)
I2C_SDA (I/0) 12 11 BOOT (I - Open Drain)
D0 10 9 USB_VIN
SWO G11 8 7 GND
RESET# (I - Open Drain) 6 5 USB_D-
3.3V_EN 4 3 USB_D+
3.3V 2 1 GND
Signal Group Signal I/O Description Voltage
Power 3.3V I 3.3V Source 3.3V
GND Return current path 0V
USB_VIN I USB VIN compliant to USB 2.0 specification.
Connect to pins on Processor Board that require 5V for USB functionality.
4.8-5.2V
RTC_3V_BATT I 3V provided by external coin cell or mini battery. Max draw = 100μA.
Connect to pins maintaining an RTC during power loss. Can be left NC.
3V
3.3V_EN O Controls the carrier board's main voltage regulator. Voltage above 1V will enable 3.3V power path. 3.3V
BATT_VIN/3 I Carrier board raw voltage over 3. 1/3 resistor divider is implemented on carrier board.
Amplify the analog signal as needed for full 0-3.3V range
3.3V
Reset Reset I Input to processor. Open drain with pullup on processor board. Pulling low resets processor. 3.3V
Boot I Input to processor. Open drain with pullup on processor board. Pulling low puts processor into special boot mode. Can be left NC. 3.3V
USB USB_D± I/O USB Data ±. Differential serial data interface compliant to USB 2.0 specification. If UART is required for programming, USB± must be routed to a USB-to-serial conversion IC on the processor board.
USB Host USBHOST_D± I/O For processors that support USB Host Mode. USB Data±. Differential serial data interface compliant to USB 2.0 specification. Can be left NC.
CAN CAN_RX I CAN Bus receive data. 3.3V
CAN_TX O CAN Bus transmit data. 3.3V
UART UART_RX1 I UART receive data. 3.3V
UART_TX1 O UART transmit data. 3.3V
UART_RTS1 O UART request to send. 3.3V
UART_CTS1 I UART clear to send. 3.3V
UART_RX2 I 2nd UART receive data. 3.3V
UART_TX2 O 2nd UART transmit data. 3.3V
I2C I2C_SCL I/O I2C clock. Open drain with pullup on carrier board. 3.3V
I2C_SDA I/O I2C data. Open drain with pullup on carrier board 3.3V
I2C_INT# I Interrupt notification from carrier board to processor. Open drain with pullup on carrier board. Active LOW 3.3V
I2C_SCL1 I/O 2nd I2C clock. Open drain with pullup on carrier board. 3.3V
I2C_SDA1 I/O 2nd I2C data. Open drain with pullup on carrier board. 3.3V
SPI SPI_COPI O SPI Controller Output/Peripheral Input. 3.3V
SPI_CIPO I SPI Controller Input/Peripheral Output. 3.3V
SPI_SCK O SPI Clock. 3.3V
SPI_CS# O SPI Chip Select. Active LOW. Can be routed to GPIO if hardware CS is unused. 3.3V
SPI/SDIO SPI_SCK1/SDIO_CLK O 2nd SPI Clock. Secondary use is SDIO Clock. 3.3V
SPI_COPI1/SDIO_CMD I/O 2nd SPI Controller Output/Peripheral Input. Secondary use is SDIO command interface. 3.3V
SPI_CIPO1/SDIO_DATA0 I/O 2nd SPI Peripheral Input/Controller Output. Secondary use is SDIO data exchange bit 0. 3.3V
SDIO_DATA1 I/O SDIO data exchange bit 1. 3.3V
SDIO_DATA2 I/O SDIO data exchange bit 2. 3.3V
SPI_CS1/SDIO_DATA3 I/O 2nd SPI Chip Select. Secondary use is SDIO data exchange bit 3. 3.3V
Audio AUD_MCLK O Audio master clock. 3.3V
AUD_OUT/PCM_OUT/I2S_OUT/CAM_MCLK O Audio data output. PCM synchronous data output. I2S serial data out. Camera master clock. 3.3V
AUD_IN/PCM_IN/I2S_IN/CAM_PCLK I Audio data input. PCM syncrhonous data input. I2S serial data in. Camera periphperal clock. 3.3V
AUD_LRCLK/PCM_SYNC/I2S_WS/PDM_DATA I/O Audio left/right clock. PCM syncrhonous data SYNC. I2S word select. PDM data. 3.3V
AUD_BCLK/PCM_CLK/I2S_CLK/PDM_CLK O Audio bit clock. PCM clock. I2S continuous serial clock. PDM clock. 3.3V
SWD SWDIO I/O Serial Wire Debug I/O. Connect if processor board supports SWD. Can be left NC. 3.3V
SWDCK I Serial Wire Debug clock. Connect if processor board supports SWD. Can be left NC. 3.3V
ADC A0 I Analog to digital converter 0. Amplify the analog signal as needed to enable full 0-3.3V range. 3.3V
A1 I Analog to digital converter 1. Amplify the analog signal as needed to enable full 0-3.3V range. 3.3V
PWM PWM0 O Pulse width modulated output 0. 3.3V
PWM1 O Pulse width modulated output 1. 3.3V
Digital D0 I/O General digital input/output pin. 3.3V
D1/CAM_TRIG I/O General digital input/output pin. Camera trigger. 3.3V
General/Bus G0/BUS0 I/O General purpose pins. Any unused processor pins should be assigned to Gx with ADC + PWM capable pins given priority (0, 1, 2, etc.) positions. The intent is to guarantee PWM, ADC and Digital Pin functionality on respective ADC/PWM/Digital pins. Gx pins do not guarantee ADC/PWM function. Alternative use is pins can support a fast read/write 8-bit or 4-bit wide bus. 3.3V
G1/BUS1 I/O 3.3V
G2/BUS2 I/O 3.3V
G3/BUS3 I/O 3.3V
G4/BUS4 I/O 3.3V
G5/BUS5 I/O 3.3V
G6/BUS6 I/O 3.3V
G7/BUS7 I/O 3.3V
G8 I/O General purpose pin 3.3V
G9/ADC_D-/CAM_HSYNC I/O Differential ADC input if available. Camera horizontal sync. 3.3V
G10/ADC_D+/CAM_VSYNC I/O Differential ADC input if available. Camera vertical sync. 3.3V
G11/SWO I/O General purpose pin. Serial Wire Output 3.3V
M.2 Connector Pin# MicroMod Pin Name Board Connection Description
1 GND GND Ground plane.
2 3.3V 3.3V Regulated 3.3V via USB-C.
3 USB_D+ -- USB D+ connection for Processor Board.
4 3.3V_EN -- Voltage regulator enable input.
5 USB_D- -- USB D- connection for Processor Board.
6 RESET RESET Button Connected to RESET Button. Reset is active LOW
9 USB_VIN -- Input voltage from USB.
10 D0 D0 Digital I/O pin
11 BOOT BOOT Button Connected to BOOT Button. Boot is active LOW.
12 I2C_SDA Qwiic Connector - SDA I2C data signal for Qwiic devices.
14 I2C_SCL Qwiic Connector - SCL I2C clock signal for Qwiic devices.
16 I2C_INT INT I2C interrupt pin
18 D1 D1 Digital I/O pin
55 SPI_CS CS Chip Select.
57 SPI_SCK SCK SPI Clock signal.
59 SPI_COPI COPI SPI Controller Out/Peripheral In signal.
61 SPI_CIPO CIPO SPI Controller In/Peripheral Out signal.

Breakout Pins

The Qwiic Carrier Board features a 3.3V, a ground, seven I/O breakout pins. The functionality of these pins are detailed in the table above.

breakout pins
Breakout pins on the MicroMod Qwiic Carrier Board. (Click to enlarge)