How to Power a Project

Pages
Contributors: JordanDee

Resources and Going Further

You should now know the most common ways to power your circuit and how to figure out which way is best for you depending on your your project’s specific requirements. You can make a better judgment now based on current, voltage, connector, and mobility considerations for your project. Check out these other great tutorials to monitor, control, or power your project!

Wake-on-Shake Hookup Guide

A basic hookup guide for getting started with the SparkFun Wake-on-Shake. The board gives you the ability to put your project into hibernation until bumped or shaken awake using the ADXL362 accelerometer. This means you can design projects meant to stay inert for long periods of time, possibly even several years, depending on the battery type used to power the project.

TPL5110 Nano Power Timer Hookup Guide

The TPL5110 Nano Power Timer is ideal for applications that require low power, and especially those projects that are running off of a LiPo battery. The Nano Power Timer will turn on your project after the set amount of time, continuously.

ATX Power Connector (4-Pin) Breakout Hookup Guide

Do you need to power a project with 12V and 5V from one wall adapter? The ATX power connector breaks out the standard 4-pin computer peripheral port for your 12V and 5V devices!

Getting Started with the MyoWare® 2.0 Muscle Sensor Ecosystem

The MyoWare® 2.0 Muscle Sensor, an Arduino-compatible, all-in-one electromyography (EMG) sensor from Advancer Technologies. In this tutorial, we will go over the features and related shields to connect the sensor to a muscle group.

Or check out some of these blog posts for ideas: