Air Velocity Sensor Breakout - FS3000 Hookup Guide

Pages
Contributors: QCPete, Ell C
Favorited Favorite 0

Hardware Overview

FS3000

The FS3000 is a surface-mount type air velocity module utilizing a MEMS thermopile-based sensor. It features a digital output with 12-bit resolution and comprises a “solid” thermal isolation technology and silicon carbide coating to protect it from abrasive wear and water condensation.

There are two versions of this sensor with different upper ranges (1005/1015). The 1005 version which can sense 0 to 7.23m/s (0 to 16.17mph) and 1015 version which can sense 0 to 15m/s (0 to 33.6mph). By looking at the PCB, there will be a solder blob indicating which version that you ordered and received. You can also check out the markings labeled on the IC. You'll also notice the arrow on the matching the silkscreen indicating what direction air should flow for a measurement. For the scope of this tutorial, we will be using the FS3000-1005 mostly to highlight the board and connect.

FS3000-1005 FS3000-1015
FS3000-1005 [ SEN-18377 ] FS3000-1015 [ SEN-18768 ]

Below is a table of a few of the specifications taken from the datasheet. For more in depth information on this chip, please refer to the datasheet linked in the Resources and Going Further.

CharacteristicFS3000-1005FS3000-1015
Operating Voltage2.7V to 3.3V, typically 3.3V via Qwiic Connector
Current Consumption 10mA
Air Flow Speed0 to 7.23 m/s
(0 to 16.17 mph)
0 to 15 m/s
(0 to 33.6 mph)
Digital Output (Min to Max of Flow Range)409 to 3686 "count"
Flow Accuracy5% @ 25°C
Resolution12-bit
I2C Address0x28
Operating Temperature-20°C to 85°C

Qwiic Connectors

Our Qwiic Ecosystem makes sensors pretty much plug and play. There are two Qwiic connectors on either side of the Qwiic Air Velocity Sensor board to provide power and I2C connectivity simultaneously. The sensor's I2C lines are connected to two 2.2kΩ pull-up resistors. The I2C address of the board is 0x28.

Qwiic connectors on either side of the board

Pins

Power

Ideally, power will be supplied via the Qwiic connectors on either side of the board. Alternatively, power can be supplied through the header along the bottom side of the board labeled 3V3 and GND. The input voltage range should be between 2.7-3.3V. The usual current draw is around 10mA.

Power pins are the two pins on the far right of the six pins at the bottom of the board

I2C

The I2C pins break out the functionality of the Qwiic connectors. Depending on your application, you can connect to these pins via the plated through holes for SDA and SCL.

I2C Pins are the two pins in the middle of the six pins at the bottom of the board

VCM and ADCR

VCM is an output from the sensor that provides a common bias voltage. With a power supply voltage at 3.3V (usual for Qwiic), the VCM pin will output 1.25V. The current datasheet does not provide any more information about this pin, however, it is most likely a bias voltage used with some sort of analog gain stage internal to the sensor (prior to it's internal ADC). This can be useful for unique more advanced projects that may benefit from having a known bias voltage tied to another analog system.

ADCR stands for ADC Reference. This is an input to the FS3000 which allows you to provide a reference voltage for the sensor's internal ADC. Note, you must first cut the "ADC-REF" jumper (on the bottom side of the board) before providing a custom voltage to this pin. By default, it is connected to VDD.

VCM and ADCR pins are the two pins on the far right of the six pins at the bottom of the board

Jumpers

LED

If power consumption is an issue, cutting this jumper will disable the Power LED on the front of the board.

LED LED Jumper is located on the right side of the board
PWR LED
on Top Side
LED Jumper
on Bottom Side

ADC-REF

Cut the ADC-REF jumper to provide your own custom ADC reference voltage on the ADCR header pin. By default (jumper closed), it is connected to VDD.

ADC Ref Jumper is at the top of the board

I2C

The SparkFun Air Velocity Sensor has pull up resistors attached to the I2C bus; if multiple sensors are connected to the bus with the pull-up resistors enabled, the parallel equivalent resistance will create too strong of a pull-up for the bus to operate correctly. As a general rule of thumb, disable all but one pair of pull-up resistors if multiple devices are connected to the bus. If you need to disconnect the pull up resistors they can be removed by cutting the traces on the corresponding jumpers highlighted below.

I2C Jumper is on the left side of the board

Board Outline

The board measures 1" x 1"