Simblee Breakout Board Hookup Guide a learn.sparkfun.com tutorial

Available online at: http://sfe.io/t444

Contents

Introduction

The SparkFun Simblee Breakout Board is a programmable board that allows you to add mobile app functionality via Bluetooth Low Energy (BLE, or Bluetooth 4.0) to your embedded projects. Unlike other BLE solutions, the Simblee requires no specialized app development skills to realize the phone-side interface; all the necessary coding is done in the Arduino environment and then uploaded to a browser app on the phone.

SparkFun Simblee BLE Breakout - RFD77101

WRL-13632
Retired

If you want to skip directly to writing code, we have another tutorial covering coding concepts that are common to all Simblee products. If you're looking for a sewable solution, checkout out our Simblee LilyPad Board.

Recommended Reading

There are a few topics you may want to be sure you understand before you go any further.

Hardware Overview

Here's a rundown of the features you'll find on the Simblee breakout board:

Labeled board

USB-to-Serial Programmer

We recommend using the either the LilyPad FTDI Basic, the 5V FTDI Basic, or the 5V configured FT231X breakout for programming the Simblee. There is a 3.3V voltage regulator after VIN and a protection resistor on it so a 5V input on the RX line won’t damage the module

Do not use the 3.3V FTDI Basic, as it may not be able to source enough current from the 3.3V rail.

SparkFun FTDI Basic Breakout - 5V

DEV-09716
$17.95

SparkFun FT231X Breakout

BOB-13263
$14.95

LilyPad FTDI Basic Breakout - 5V

DEV-10275
Retired

Output Control w/ Transistors

Warning: If you've used Arduino boards before, you're probably used to connecting LEDs to the pins as output signals. A normal Arduino can light up many LEDs at once, and several per pin; for the Simblee, you shouldn't try more than ONE per pin, with an additional recommendation of don't try to turn on more than three at a time across all pins. The processor inside the Simblee module cannot drive enough current to light up more LEDs than this (pg 9 of the Datasheet).

If you decide to drive multiple LEDs, try using a transistor as a switch.

For controlling loads with the pins, try looking at some of these transistors:

SparkFun MOSFET Power Controller

PRT-11214
$10.95

Transistor - NPN, 50V 800mA (BC337)

COM-13689
$0.55

SparkFun MOSFET Power Control Kit

COM-12959
Retired

Project Examples

That concludes the hardware overview for the Simblee Breakout. For more information on using the Simblee to create your own applications for embedded project, visit our Simblee Concepts tutorial.

Need some inspiration for your next project? Check out the project below from our creative technologist with a Simblee, pulse sensor, vibe motors, accelerometer, and 3D printed wrist bracer.

The documentation of the project can be found in the GitHub Repository below.

Simblee LilyPad Fitness Bracer GitHub Repoository

Resources and Going Further

For more info on the Simblee module itself, please have a look at the **Simblee User's Manual **.

Here are a few more resources for the Simblee:

For more Bluetooth fun, check out these other SparkFun tutorials.

SparkFun Arduino ProtoShield Hookup Guide

The SparkFun Arduino ProtoShield PCB and ProtoShield kit lets you customize your own Arduino shield using whatever custom circuit you can come up with! This tutorial will go over its features, hardware assembly, and how to use the shield with an Arduino R3 footprint.

SparkFun Edge Hookup Guide

Get to know your Edge board, including both the hardware features for you to utilize as well as how to get talking to it.

ESP32 OTA Updates over BLE from a React Web Application

Learn how to flash firmware Over-the-Air using a BLE React WebApp and ESP32

MicroMod STM32WB5MMG Hookup Guide

Add a powerful combination of computing power and wireless communication to your next MicroMod project with the SparkFun MicroMod STM32WB5MMG Processor.

learn.sparkfun.com | CC BY-SA 3.0 | SparkFun Electronics | Niwot, Colorado