
Galileo Unread Email Counter a
learn.sparkfun.com tutorial

Available online at: http://sfe.io/t185

Contents

Introduction
Taming the Python
The Arduino Sketch
Resources and Going Further

Introduction

Does your life revolve around email, or do you need a little nudge once-in-a-while to go check your
inbox? If you've ever wanted to check your email without actually checking your email, this is the
project for you! An Intel Galileo-based, Python/Arduino hybrid, unread email notifier! This project
connects to the Internet over either WiFi or Ethernet, logs into your email account, checks how
many unread emails you have, and displays that number onto a 7-segment LED.

Page 1 of 8

https://learn.sparkfun.com/tutorials
http://sfe.io/t185
https://www.sparkfun.com/products/12720

This project is an excellent introduction to the Galileo. It takes advantage of the Arduino form-
factor, by equipping the powerful single-board computer (SBC) with an Arduino shield, and it also
makes use of Python and the Galileo's easy network-connectivity. Plus, of course, all of the
coding and action takes place within the comfy confines of an Arduino sketch.

Required Materials

Here is a list of materials you'll need to set this project up:

Intel Galileo -- The Galileo is the brains of the operation. It'll be running an Arduino sketch,
calling a Python script, and updating the display.

The Galileo already includes a 5V Wall Adapter and Micro-B USB Cable to supply power
and a programming interface. If you don't already have them, you'll need both of those.

OpenSegment Shield -- This serially-controlled display makes interfacing with a large, bright
4-digit 7-segment display super-easy. (Also available in Red, Green, White, and Yellow.)
µSD Card -- This project requires the "bigger" Linux image, and this card is also used to store

Page 2 of 8

https://cdn.sparkfun.com/assets/b/2/d/1/b/52e17a70ce395fc9468b4569.jpg
https://www.sparkfun.com/products/12720
https://www.sparkfun.com/products/8269
https://www.sparkfun.com/products/10215
https://www.sparkfun.com/products/11846
https://www.sparkfun.com/products/11849
https://www.sparkfun.com/products/11847
https://www.sparkfun.com/products/11845
https://www.sparkfun.com/products/11848
https://www.sparkfun.com/products/11609
https://learn.sparkfun.com/tutorials/galileo-getting-started-guide/bigger-linux-image

a Python script.

To connect your Galileo to the Internet, you'll either need:

An Ethernet Cable long enough to connect your Galileo to an Internet-connected router.
--or--

A Mini PCIe WiFi Card based on the Intel Centrino chipset (so it's compatible with the
Galileo's drivers). Depending on which card you get, you may need some WiFI antennas
connected to it.'

Suggested Reading

Before delving into this tutorial, we recommend you check out the Galileo Getting Started Guide,
which will help you get your Galileo set up. You will need the "bigger" Galileo Linux image installed,
so follow along with the directions on that part of the tutorial.

In addition to that tutorial, here are some related guides we'd recommend reading:

Using the Serial 7-Segment Display -- This tutorial provides a good overview of the
OpenSegment Shield we'll be using in this project.
Serial Peripheral Interface (SPI) -- We'll use SPI to communicate between the Galileo and
OpenSegment Shield display.
How to Power Your Project -- If you want to take your project mobile, or use something other
than the 5V DC power supply, check out this tutorial.

Taming the Python

Before you upload any Arduino code, or even turn the Galileo on, let's set up the Python unread-
email-checker script. This script does most of the heavy lifting, like connecting to an IMAP4 server,
authenticating with our login/password, and checking your email.

Configuring the Script

The Python unread-email-checking script is below. Five magical lines of Python is all it takes to
check our email:

Page 3 of 8

https://www.sparkfun.com/categories/150
http://www.newegg.com/Product/Product.aspx?Item=N82E16833106161
https://www.sparkfun.com/products/11320
https://learn.sparkfun.com/tutorials/galileo-getting-started-guide
https://learn.sparkfun.com/tutorials/galileo-getting-started-guide/bigger-linux-image
https://learn.sparkfun.com/tutorials/using-the-serial-7-segment-display
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/how-to-power-a-project

view
raw

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than
what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Show hidden characters

pyMailCheck.py hosted with ❤ by GitHub

Click here to download (right-click > Save As...) the script, or copy/paste the above into a file
precisely named pyMailCheck.py. Then open it with a plaintext editor (Notepad, TextEdit, etc.).

You'll have to do a bit of editing to customize this script for yourself. It's set up to grab an email
count from a Gmail account. If you're using another email service, you'll need to change at least
the address of the IMAP4 server on line 5. Depending on your mail server, you may also need to
change the port (993 is very standard, though).

Also, on line 6, you'll need to change the login and password values to match your account.

Storing the Script

After following along with the Galileo Getting Started Guide, you should have your Galileo set up
with the "bigger" Linux image. This adds Python support, along with WiFi drivers and a list of other
fun utilities. We'll store this Python script on that SD card as well.

Copy the pyMailCheck.py file that you've edited, and paste it to the top level of your SD card,
along with the boot directory, bzImage and other couple of files on the card.

1 # pyMailCheck.py - Logs into your gmail and prints the number of unread emails.

2 # Place this file in the top level of your Galileo's SD card.

3

4 import imaplib # Used to connect to an IMAP4 server.

5 obj = imaplib.IMAP4_SSL('imap.gmail.com', '993') # Connect to an IMAP4 sever over SSL, port 993

6 obj.login('my_email_address@gmail.com','myPassword') # Identify the client user and password

7 obj.select() # Select a the 'INBOX' mailbox (default parameter)

8 # Search mailbox no (None) charset, criterion:"UnSeen". Will return a tuple, grab the second part,

9 # split each string into a list, and return the length of that list:

10 print len(obj.search(None,'UnSeen')[1][0].split())

Page 4 of 8

https://github.co/hiddenchars
{{ revealButtonHref }}
https://gist.github.com/jimblom/8292444/raw/172735c6bd05ffdd1ad8e7cbbffe1ec375727eb2/pyMailCheck.py
https://gist.github.com/jimblom/8292444#file-pymailcheck-py
https://github.com
https://cdn.sparkfun.com/tutorialimages/Galileo_Email/pyMailCheck.py
https://learn.sparkfun.com/tutorials/galileo-getting-started-guide

pyMailCheck.py on the Galileo SD card -- top level!

With that, you can remove the SD card from your computer and put it back into your Galileo. Onto
the next step -- the Arduino sketch!

The Arduino Sketch

With Python taking care of the email checking, our Arduino sketch is free to update the display and
interact with any other hardware. The trick is getting the Arduino sketch to interact with the Python
script. We'll use a special function -- system() -- to call the script from our Arduino sketch.

Uploading the Sketch

There are two versions of this Arduino sketch -- one for WiFi and another for Ethernet. Both achieve
the same result, they just include different libraries, and use different interfaces to get there.
Download your preferred sketch below:

Download the WiFi Arduino Sketch
Download the Ethernet Arduino Sketch

If you're using the WiFi sketch, there are a couple variables you'll have to edit to connect to your
WiFi network. On line 23 you'll need to set the ssid[] variable to your network SSID (network name).
And, if your network has a password, on the line below you'll need to modify the pass[] variable as
well.

For both sketches, you can modify the emailUpdateRate variable above setup() to adjust the frequency
of your mail checks. At 10000, it'll check your mail every 10 seconds. We don't recommend
checking more often than that.

Once you've made your fine tunings, upload the sketch to your Galileo.

Page 5 of 8

https://cdn.sparkfun.com/assets/7/4/1/4/4/52e1a24ace395f0f2f8b456a.png
https://cdn.sparkfun.com/tutorialimages/Galileo_Email/pyMailCheck_WiFi.zip
https://cdn.sparkfun.com/tutorialimages/Galileo_Email/pyMailCheck_Ethernet.zip

Running the Sketch

For debug purposes, the Arduino sketch will print a handful of messages to the serial monitor (9600
bps). This is especially handy if you don't have a display attached -- the unread email count will be
printed here too.

If you do have a OpenSegment Shield attached, you should initially see the display turn to "0000".
Every 10 seconds, as the email checker runs, you may see that value change. Try sending yourself
an email! Does the counter go up? Read the email. Does it go down?

15 unread emails. Can Python answer my emails too?

Now you'll never be the last to see the latest silly email thread!

Dissecting the Sketch

Page 6 of 8

https://cdn.sparkfun.com/assets/b/2/d/1/b/52e17a70ce395fc9468b4569.jpg

There are a few key lines of code here that you'd never see on an Arduino Uno, Mega, or the like.
First and foremost to that are the system() function calls.

System Calls

The system(const char * command) function is a standard C function which is used to issue a command
to your operating system's command processor. With this function, your Arudino sketch can interact
with Linux, just as you might through a terminal, over the command line.

Each system function takes a single parameter: an array of char's (i.e. a string of characters). The
character array can be any system function -- you could stick something like "mkdir foo" in the
system function, and your Arduino would ask the Linux kernel to make a directory called "foo".

In this sketch, we use the system function to run our Python script. The first system call is in the
getEmailCount() function:

language:c
// Send a system call to run our python script and route the
// output of the script to a file.
system("python /media/realroot/pyMailCheck.py > /media/realroot/emails");

This is a call to run the pyMailCheck.py script, and route the output to a file called "emails". So
instead of printing the number of unread emails to the terminal, our script will place that value in a
file. The "/media/realroot/" directory is where the Linux kernel finds the "top level" of our SD card.

Reading the SD Card

To read the unread email count returned by the Python script, all we need to do is read the contents
of the "emails" file. This can be done with the included Arduino SD library.

To read from the SD card, simply open the "emails" file with the SD.open function, and read to the
end with the File.read function. A little bit of parsing and converting is required to turn the string of
characters to an integer value.

SPI-ing to the Display

The OpenSegment supports all sorts of communication standards -- serial, I2C, and SPI. All are
supported by the Galileo, but SPI was the only one that didn't seem to require any extra
modification to the shield.

To interface with the display, the SPI library (included with Arduino) is used. Check the bottom of
the sketch to see a couple of helper functions, which can write a single byte or a string of bytes to
the display.

Resources and Going Further

This tutorial barely scratches the surface of what the Galileo is capable of. With Python and access

Page 7 of 8

http://www.cplusplus.com/reference/cstdlib/system/
http://arduino.cc/en/Reference/SD
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/FileRead
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://arduino.cc/en/Reference/SPI

to the Internet, there endless project possibilities: you can monitor Twitter, solve difficult math
problems, even invent your own games. Plus the Galileo has other hardware that we haven't made
use of either: analog inputs, PWM output, and USB host functionality, which could support USB
keyboards, mice, webcams and more.

What project will you make with the Galileo? We'd love to hear about it! Let us know in the
discussion tab.

If you're looking for some more project inspiration, check out these related tutorials:

Setting Up Raspbian and DOOM! -- How to get started with that other, popular SBC -- the
Raspberry Pi.
Raspberry Pi Twitter Monitor -- How to monitor Twitter with Raspberry Pi and Python. This'd
be easy to port over to Galileo!
pcDuino Crowdsource Kiosk -- How to create a crowdsourced, candy-vending kiosk, using the
pcDuino.

learn.sparkfun.com | CC BY-SA 3.0 | SparkFun Electronics | Niwot, Colorado

Page 8 of 8

https://learn.sparkfun.com/tutorials/raspberry-pi-twitter-monitor
http://inventwithpython.com/chapters/
https://learn.sparkfun.com/tutorials/setting-up-raspbian-and-doom
https://learn.sparkfun.com/tutorials/raspberry-pi-twitter-monitor
https://learn.sparkfun.com/tutorials/pcduino-crowdsource-kiosk
https://learn.sparkfun.com
http://creativecommons.org/licenses/by-sa/3.0/

	Galileo Unread Email Counter a learn.sparkfun.com tutorial
	Available online at: http://sfe.io/t185
	Contents
	Introduction
	Required Materials
	Suggested Reading

	Taming the Python
	Configuring the Script
	Storing the Script

	The Arduino Sketch
	Uploading the Sketch
	Running the Sketch
	Dissecting the Sketch
	System Calls
	Reading the SD Card
	SPI-ing to the Display

	Resources and Going Further

